Visible-light Induced Photocatalytic Fixation of CO₂ into Benzophenone Using Poly(p-phenylene) as a Photocatalyst

Tomoyuki OGATA, Kunizo HIRANAGA, Shinjiro MATSUOKA, Yuji WADA, and Shozo YANAGIDA*

Chemical Process Engineering, Faculty of Engineering, Osaka University, Suita, Osaka 565

Photoreductive fixation of CO_2 into benzophenone can be achieved in a CO_2 -saturated DMF solution by using poly(p-phenylene) as a heterogeneous photocatalyst and triethylamine as an electron donor. The presence of quaternary ammonium salts increases the yield of benzilic acid as a CO_2 -photofixed product from benzophenone.

Some efforts have recently been conducted toward development of photochemical fixation of CO_2 into some organic molecules by using photosensetizers or photocatalysts. Recently, we reported that colloidal CdS microcrystallites prepared from cadmium salt and H_2S in DMF (CdS-DMF) catalyze not only photoreduction of CO_2 to CO but also photofixation of CO_2 into benzophenone yielding benzilic acid. The photofixation was interpreted to proceed through coupling between the radical anion of CO_2 and the ketyl radical that is formed by one-electron transfer reduction of benzophenone, since only the nanoscale CdS microcrystallites that are efficient for photoreduction of both CO_2 and benzophenone are effective for the formation of benzilic acid. On the other hand, we also found that linear aromatic compounds such as oligo(p-phenylenes) (OPP-n) or poly(p-phenylene) (PPP) induce effective photoreduction of CO_2 to formate and CO under CO under CO under CO into benzophenone by using CO as a photocatalyst, triethylamine (TEA) as an electron donor, and quaternary ammonium salt (QA) as a CO-catalyst. The outline of this heterogeneous photofixation system is shown in Eq. 1.

As a photocatalyst, PPP was prepared according to a literature.⁴⁾ Photoreaction was carried out as follows; in a Pyrex tube (8 mm in diameter) were placed PPP (10 mg), DMF solution (2 ml) of benzophenone (2.5 mM, 1

PPP:
$$\begin{array}{c} & & \\$$

 $M = 1 \text{ mol dm}^{-3}$), distilled TEA (1 M) and quaternary ammonium salt (40 mM or none). After being purged with CO₂ gas, the tube was closed with a rubber stopper and then irradiated under stirring at $\lambda > 400 \text{ nm}$ using a 300 W tungsten halogen lamp and a sodium nitrite solution filter. Photoproducts were analyzed by GC (for CO and H₂), HPLC (for BP, BPOH, and (BPOH)₂), and three-dimensional HPLC (for benzilic acid). After an

Run	Additive ^b)	Convn / %	Product yield / % ^c)		
			Benzilic acid	ВРОН	(BPOH)2
1	None	100	3	6	37
2	Et4NCl	100	34	3	34
3	Et4NClO4	100	16	6	38
4	n-Bu ₄ NCl	96	15	5	37
5	LiCl	100	5	8	25
6	MgCl ₂	100	2	6	42

Table 1. PPP-catalyzed Photofixation of CO₂ into Benzophenone in the Presence of Various Salts in DMFa)

irradiation of a CO_2 -saturated DMF solution containing only PPP, benzophenone, and TEA, a small quantity of benzilic acid (in less than 5% yield) was formed with benzopinacol ((BPOH)₂) and benzhydrol (BPOH). A trace amount of CO was also detected. However, it was found that an addition of tetraethylammonium chloride (Et₄NCl) into this photoreaction system improves the yield of benzilic acid (more than 30%). As an oxidation product, diethylamine (DEA) was detected during photoreaction, which is explained to be formed by hydrolysis of the initial oxidation product, $[Et_2NCHMe]^+$. The formation of other calboxylic acids (*e. g.*, HCOO⁻, CH₃COO⁻) was under the limit of detection by HPLC analysis using an anion–exclusion column. The photo–fixation of CO_2 into benzophenone was also confirmed by ^{13}C NMR analysis of the photoreaction which was carried out by using $^{13}CO_2$. The ^{13}C NMR spectrum was found to contain a signal at δ = 175 ppm attributable to ^{13}C OOH group of benzilic acid. These findings suggest that benzilic acid should be formed by the photofixation of CO_2 into benzophenone.

In Table 1 are summarized the results of photofixation of CO_2 into benzophenone in the presence of various salts. Et_4NCl was the most effective, while tetraethylammonium perchlorate (Et_4NClO_4) and tetrabutylammonium chloride (n-Bu₄NCl) were fairly effective. On the other hand, inorganic salts such as LiCl and $MgCl_2$ had almost no effects on the formation of benzilic acid.

Although the PPP-catalyzed CO_2 photoreduction to formate under visible light irradiation was not affected at all by the presence of Et_4NCl , the similar but homogeneous CO_2 reduction induced by p-terphenyl (OPP-3) under UV light irradiation, has become efficient in the presence of Et_4NCl . Further, the lifetime of the intermediary radical anion of OPP-3 has been observed to increase by a factor of 1.2 when compared with that in the absence of Et_4NCl . Further investigations on the role of quaternary ammonium salt in the heterogeneous photocatalysis of PPP are currently in progress.

References

- S. Tazuke, S. Kazama, and N. Kitamura, J. Org. Chem., 51, 4548(1986); D. Mandler and I. Willner, J. Chem. Soc., Perkin Trans. 2, 1988, 997; H. Inoue, Y. Kubo, and H. Yoneyama, J. Chem. Soc., Faraday Trans., 87, 553(1991); T. Kawai, T. Kuwabara, and K. Yoshino, ibid., 88, 2041(1992).
- 2) M. Kanemoto, H. Ankyu, Y. Wada, and S. Yanagida, Chem. Lett., 1992, 2113.
- 3) S. Matsuoka, T. Kohzuki, C. Pac, A. Ishida, S. Takamuku, M. Kusaba, N. Nakashima, and S. Yanagida, *J. Phys. Chem.*, **96**, 4437(1992).
- 4) T. Yamamoto, Y. Hayashi, and A. Yamamoto, Bull. Chem. Soc. Jpn., 51, 2091(1978).
- 5) S. Yanagida, Work in progress.

(Received February 15, 1993)

a) Irradiated at $\lambda > 400$ nm for 24 h. b) Each concn was 40 mM. c) Yields are calculated on the basis of converted benzophenone.